Generative Adversarial Networks

Contenu

Titre
Generative Adversarial Networks
Date de soumission
24 mars 2023, 08:58:41 +00:00
Est référencé par
BIBJXMGZ
Résumé
We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.
Date
2014-06-10
doi
10.48550/arXiv.1406.2661
Source
arXiv.org
is compiled by
Lucky Semiosis
Complexité
693
Date de modification
8 septembre 2023, 06:54:19 +00:00
Détails de la complexité
Physique,1,,,,,49,49
Physique,2,,,,,59,118
Actant,2,,,,,9,18
Concept,1,,,,,48,48
Concept,2,,,,,60,120
Rapport,1,1,Physique,Concept,properties,48,48
Rapport,1,1,Physique,Physique,values,48,48
Rapport,1,1,Physique,Actant,dcterms:creator,8,8
Rapport,2,2,Actant,Concept,properties,44,88
Rapport,2,2,Actant,Physique,values,44,88
Rapport,1,1,Physique,Actant,cito:isCompiledBy,1,1
Rapport,1,1,Physique,Concept,skos:semanticRelation,3,3
Rapport,2,2,Concept,Concept,properties,9,18
Rapport,2,2,Concept,Physique,values,9,18
Rapport,1,1,Physique,Physique,media,2,2
Rapport,2,2,Physique,Concept,properties,4,8
Rapport,2,2,Physique,Physique,values,4,8
Rapport,1,1,Physique,Physique,uri,2,2
Totaux de la complexité
Physique,2,1,2,108,167
Actant,1,2,2,9,18
Concept,2,1,2,108,168
Rapport,13,1,2,226,340
Existence,18,1,2,451,693
Collections
Zotero

Annotations

[Annotation #300378] 2023-07-18 07:30:34 Samuel Szoniecky tagging
Value Purpose
Zotero automatique tagger a taggé le document Generative Adversarial Networks avec le tag computer science
classifying
Target selector Selector type
o:Item
[Annotation #300381] 2023-07-18 07:30:37 Samuel Szoniecky tagging
Value Purpose
Zotero automatique tagger a taggé le document Generative Adversarial Networks avec le tag Machine Learning
classifying
Target selector Selector type
o:Item
[Annotation #300384] 2023-07-18 07:30:42 Samuel Szoniecky tagging
Value Purpose
Zotero automatique tagger a taggé le document Generative Adversarial Networks avec le tag Statistics
classifying
Target selector Selector type
o:Item