Recommender Systems

Contenu

Titre
Recommender Systems
Date de soumission
30 juin 2017, 18:58:54 +00:00
Est référencé par
MQ2G6PMD
Résumé
Acclaimed by various content platforms (books, music, movies) and auction sites online, recommendation systems are key elements of digital strategies. If development was originally intended for the performance of information systems, the issues are now massively moved on logical optimization of the customer relationship, with the main objective to maximize potential sales. On the transdisciplinary approach, engines and recommender systems brings together contributions linking information science and communications, marketing, sociology, mathematics and computing. It deals with the understanding of the underlying models for recommender systems and describes their historical perspective. It also analyzes their development in the content offerings and assesses their impact on user behavior.
numéro d’édition
1
Editeur
Wiley-ISTE
Date
4 décembre 2014
nombre de pages
252
Langue
Anglais
Source
Amazon
is compiled by
Lucky Semiosis
Complexité
221
Date de modification
8 septembre 2023, 06:53:10 +00:00
Détails de la complexité
Physique,1,,,,,15,15
Physique,2,,,,,19,38
Actant,2,,,,,4,8
Concept,1,,,,,14,14
Concept,2,,,,,19,38
Rapport,1,1,Physique,Concept,properties,14,14
Rapport,1,1,Physique,Physique,values,14,14
Rapport,1,1,Physique,Actant,dcterms:creator,3,3
Rapport,2,2,Actant,Concept,properties,19,38
Rapport,2,2,Actant,Physique,values,19,38
Rapport,1,1,Physique,Actant,cito:isCompiledBy,1,1
Totaux de la complexité
Physique,2,1,2,34,53
Actant,1,2,2,4,8
Concept,2,1,2,33,52
Rapport,6,1,2,70,108
Existence,11,1,2,141,221
Collections
Zotero

Annotations

There are no annotations for this resource.